HashMap,在程序中我们经常要用到的集合,它的实现是通过数组+单向链表来实现的
先从HashMap的put方法讲起,基本思路是:
1,会通过数据的key做hash算法,得到数组bucket的下标值,
2,然后再把<key,value>以链表的形式(只有一个节点)插入到bucket[i]中,如果两个key算出来的下标值i一样,那么新的元素就会添加到链表之后
查看源代码:
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
当key为null时,默认放入到数组的第0个位置,不为null,获取key的hashcode,进行右移16位并与hashcode做异或运算,得到下标值
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //tab数组为空,则创建一个 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //根据容量大小和hash值计算(&)下标值 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //若节点存在,则替换 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //tab存放为树,jdk8默认为8个节点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); //tab存放为链表,添加元素 else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; //如果map数量大于负载因子*最大容量,则扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
获取元素,基本思路:如果key为null,直接命中value,如果不为空,通过key获取数组下标值,如果第一个节点的key值相同,则直接返回,若为树,则遍历树结构,若为链表,则遍历链表对比key
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; //先判断首节点 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; //多个节点 if ((e = first.next) != null) { //为树 if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); //为链表 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
数据扩容,resize(),基本思路是:将新的容量扩充到原来的2倍,并将旧的数组copy到新的数组中,注意原来链表或树的节点,位置可能会发生变化,要么是原来的位置,要么是原来位置*2,下面一幅图可以很好的描述resize元素的变化情况
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { //超过限制的最大值,则不再扩容 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } //计算新的容量,是原来的2倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { //将旧的bucket复制到新的bucket中 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //若节点为双数,则index位置不变 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } //若节点为单数,则index位置为原位置+oldCap else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
总结:
对于HashMap的原理可以理解如下:
目前有n个篮子,我要把贴有标签(标签代表key)的苹果放入篮子中,首先确定放入哪一个篮子中,所以通过苹果的标签来分类(hash算法),某一类的都放入在一个篮子中
为何要这样做,想想,如果将所有苹果都放入一个篮子中,那么我要取出某个标签的苹果,我就要在篮子中一个一个的找,如果苹果很多,这样效率是很低的,所以我是先通过苹果的标签定位到某个分类的篮子,再去里面找,这样的效率就提高很多了
参考文章:
1,http://yikun.github.io/2015/04/01/Java-HashMap%E5%B7%A5%E4%BD%9C%E5%8E%9F%E7%90%86%E5%8F%8A%E5%AE%9E%E7%8E%B0/
2,http://blog.csdn.net/vking_wang/article/details/14166593